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1 Forward

Our research program has emphasized innovative computations and theory. The computations and theory
support and enhance each other. We have a coherent approach which depends upon abstracting impor-
tant mathematical concepts and computational methods from individual applications to a wide range of
applications involving complex continua, including wave refractions, flows in elastic and plastic media, and
complex fluid mixing. We have also developed adaptive computational methods for flows with discontinu-
ities and implemented these methods on modern parallel computers.

2 List of Appendixes

There are no appendixes in this report.

3 Report of Research

3.1 Statement of Problem Studied

3.2 Summary of Most Important Work

3.2.1 Discontinuities and Adaptive Computation

The front tracking method [9]. [ 20] is a computational method that incorporates explicit degrees of freedom
to represent dynamical interfaces and wave interaction fronts. The method is highly developed in two space
dimensions, and allows the resolution of complex. chaotic interfaces between two interpenetrating fluids
[18]. It also allows for the refraction of shock waves by interfaces in a number of cases.

Interface methods (such as front tracking) are the only computational methods to duplicate the exper-
imentally correct growth rate of the mixing zone for Rayleigh-Taylor unstable interfaces [16], [ 21]. Front
tracking has provided the best and most extensive computations for this problem to date. In contrast,
modern finite difference methods without interface methods have yielded values about 30% too low in com-
parison to experiment for the growth rate [36]. In spherical geometry. they display severe mesh orientation
effects as well [1]. Front tracking computations were used in systematic studies of single and multi-mode

Rayleigh-Taylor interactions, as shown for example in Figure 1, to establish the dynamics of elementary
multiphase configurations [21] of interacting bubbles. The same computations are now being used to test
turbulence models and multiphase flow models in the high Mach number compressible context [19].

Our main results are (a) parallelization, (b) three dimensional tracked computations (in progress), (c)
complex wave interactions well resolved on a coarse grid and (d) the use of interface methods in tabular
equations of state for multiphase materials.

A. Parallelization. The parallelization of the purely hyperbolic component of the two-dimensional
front tracking code has been fully implemented on the INTEL iPSC/N60 hypercube. enabling the parallel
computatiGn of gas dynamics problems. This parallelization was achieved by domain decomposition [13].
[ 12]. [ 11], [ 14]. The spatial domain is divided into a union of disjoint rectangular subdomains, with the
accompanying division of the tracked physical discontinuity curves among the subdomains. An extended

boundary region of n mesh blocks in each direction surrounds each subdomain providing overlap into
neighboring subdomains. Typically n is an upper bound for the finite difference method's stencil radius,
for example n = 2 for the Lax-Wendroff method. Thus. the boundary region for the ij mesh block lies
,ntirly in the eight mesh blocks surrounding it (neglecting the slight complication of physical boundaries).
In Figure 1, we show a typical interface for a complex fluid mixing process, decomposed into 16 subdomains.
with the overlapping boundaries displayed as well.

The tracking algorithm progresses iteratively as:



Figure 1: A typical interface at later time on a two-dimensional 320 x 300 mesh is decom-
posed into 16 sub-interfaces. The dotted vertical strips shown here are the overlapping
border domains shared by neighboring processors.

1. Each subdomain updates those boundary regions of neighboring subdomains that lie inside its own
area. (A subdomain never updates its own boundary region. which lies entirely within neighboring
subdomains.)

2. The discontinuities are propagated and solution obtained for the next time step solely within each
subdomain, using boundary data from its boundary region. which is stored on local memory.

This scatter-gather type of algorithm is most efficient if all subdomains are equally busy during step 2.
This requires a sub-domain assignment algorithm which will produce subdomains, not of equal measure
in spatial volume but of equal measure in propagation/solution update work. At present. a rather simple
sub-domain assignment is in place. Current gas dynamics calculations have shown the parallelized code to
be running at an efficiency of approximately 90%/. The scientific power can be seen from the observation
that the full parameter study [8] from which Figure I is extracted would have taken an estimated 17 years
to complete on a Sun Microsystems SPARCstation I.

B. Three dimensional computations. Of critical physical intrest is the ability to do computations
in three spatial dimensions. We have begun this development for the front tracking code. Algorithms
for triangulating surfaces in three dimensions and for re-gridding d'ynamical points of the surfaces have
been implemented. A preliminary algorithm for generating volume filling grids which match moderately
complicated surfaces was constructed but further work in this area is required. Additionally. data structures
and code changes to handle arbitrary (spatial) dimensionality have been implemented into the front tracking
code to support calculations in 1-. 2- and 3-dimensions.

C. Complex wave interactions. The analysis of the transitions from regular to irregular refractions
of shock waves through material interfaces has resulted in an improved understanding of this process. The
ideas developed here were applied to the passage of a shock wave through a bubble [27]. yielding a substan-
tial improvement in numerical resolution of the refractions. Figure 2 shows illustrates the production of

an anomalous wave refraction during the shock-bubble interaction. As a result of this work, it was shown
that the analysis of elementary waves given in [20] was incomplete due to an overly restrictive genericity
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(a) time 0.0 jisec b) time 0.15 I sec

incident shock wave

air bubble

regular diffraction

(c) time 0.6 pisec (d) time 1.0 jisec

anomalous reflection

10Ax= 10 Ay

Figure 2: The collision of a shock wave in water with an air bubble. The fluids ahead of
the shock are at normal conditions of 1 atm. pressure. with the density of water I g/cc and
air 0.0012 g/cc. The pressure behind the incident shock is 10 Kbar with a shocked water
density of 1.195 g/cc. The grid is 60 x 60. The contours in Figure 2.b and Figure 2.c are
plotted on a scale of 0.001 - 10 Kbars. while the pressure range in Figure fg:anom.d is 0
- 8.5 Kbars. The tracked fronts are shown in a dark line superimposed on the pressure
contours.

assumption. and that at least one additional elementary node. the total internal reflection, must be al-
lowed. Subsequent work has applied these ideas to the Richtmyer-Meshkov problem of a shock accelerated
fluid interface [19]. It was argued [26] that for the transition of a regular (self-similar) shock refraction
into an irregular configuration, transitions can be classified into fivo basic cases depending on the shock
impedance across the interface and on whether the reflected wave i., a shock or rarefaction. This classifi-
cation provides the background necessary to incorporate the complex configurations produced by irregular
shock refractions into the front tracking method. Figure 3 illustrates one such complex interaction that
occurs for a slow-fast interaction of a shock with a fluid interface. lere we see that after transition the
original transmitted wave moves ahead of the incident shock. leading to a complex cascade of secondary
wave interactions. Note that the detail of wave interaction resolved with front tracking in one or two grid
blocks might take close to one hundred grid blocks for comparable resolution by other methods. The anal-
ysis and numerical implementation of the scattering behavior of irregular shock refractions is an essential
component for full scale front tracking simulations of shock accelerated interfaces. The late time mixing
behavior of the interface initially shown in Figure 3 is given in Figure 4. It should be noted that at this
point the fluid interface is strongly affected by shock reflections from the nearby wall at the bottom of the
computational domain.

D. Interface Methods for Tabular Equations of State. The front tracking software was used

:3
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Figure 3: The passage of a shock wave through a random interface separating two gases
of differing densities. The computation is shown together with two levels of graphical
enlargement. At transition, the transmitted shock is moving faster than the incident shock
leading to the production of a precursor wave. In the finest enlargement, one can see complex
wave diffraction patterns resolved down to the level of a single mesh block, displaying a
unique capability of front tracking. The long time behavior of this solution (Figure 4)
exhibits interface instability similar to that of Figure 1.

as an interpolation scheme for piecewise smooth but discontinuous data. This method was applied to
the representation of data in EOS tables with phase transitions [10]. Starting from original data given
on a coarse grid, spline interpolation was used a. an initialization, to 'ive piecewise smooth data defined
on a finer grid. Lower order but computationally more efficient linear-bilinear interpolation was used to
interpolate the functions on the fine grid. This mapping of data from coarse to fine grid is computationally
expensive, but is only performed once. For repeated evaluations, a silnificant improvement in the quality
of the interpolated data was obtained in this way, see Figure 5. This interpolated, piecewise smooth data
was then used to solve Riemann problems for gasses with a real equation of state. It was found that a real
gas EOS Riemann problem could be solved in no more than about :1 to 8 times the time required for a y -
law gas. This efficiency depended on the use of precomputed and preinverted tables for the sound speed,
the Riemann invariants and for thermodynamic variables expressed as a function of various combinations
of independent variables. With the use of additional tables, a time at most 3 times the I - law gas could
have been achieved in all cases studied [35).
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'i'gure 1: A detail showing the late time chaotic mixing resulting from the acceleration
of a fluid interface bv a shock wave. The figure shows th,, late time mixing zone for the
simulation described in Figure 3. The detail is taken from Ilhe bottom of the computational
cell and shows the shape of the fluid interface from Figure 3 500 microseconds after the

shock collision.

3.2.2 Chaotic Flows

Our results provide a growing body of knowledge for the Rayleigh-Taylor mixing layer. with agrce-,nt
among theory. experiment and direct simulat ion for nearly inconipres.-ible flows. We also found a surprising
new phenomenon. discovered compitationally. for compressible flows, in a substantially increased growlh
rate of the mixing layer, and a loss of universality which characteri/,d the incompressible case.

The mixing process is characterized by a penetration height h(t 1. which measures the distance of the
most advanced bubble from the position of the unperturbed interface. This height obeys a scaling law
h = ot 2 , in which the growth constant is found to be a universal constant - = .06 in the incorpressible

experiments of Read and Youngs. We found agreement with this experimental growth rate in our nearly
incompressible computations [21] and [22]. but found surprising new phenomena for even moderately
compressible fluids. namely, the mixing rate (a may exceed twice it, incompressible value. In addition.
some loss of universality was observed through dependence of the growth rate on details of specification
of the ensemble of initial conditions [8 ]. [ 7]. The dependence of the growth rate o on dimensionless
compressibility 112 is shown in Figure 6.

Irn '21. [ 2.4]. and [25] a statistical, chaotic theory of the Rayleigh-Taylor mixing layer is pgiven iii tcrr., ,
a renormalization group fixed point model. The renorrmalization approach is used since the chaotic mixing
layer involves dyna mically changing length scales. The model is validated by comparing the predicted

growth rate of the mixing layer with experiment.s and numerical computations [37]. The three main
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Figure 5: A comparison of isobars for tabulated equations of state. The plot on the left
shows the computed isobars for a SESAME [31] equation of tate near a phase boundary.
Since the rational interpolator used in SESAME does not account for the discontinuous
derivatives near the phase boundary, the resulting isobars are inaccurately represented in
this region. The plot on the right shows the computed isobar. obtained by the interface
based interpolator which accurately represent the equation of state properties of the fluid
near phase transition. Both plots are shown with the phase boundary curve superimposed
as a dotted line over the isobars.

ingredients of this fixed point analysis are (a) a superposition hypothesis to specify the bubble - bubble
interaction dynamics. (b) a theory of single bubble dynamics, (c) a stalistical model to incorporate the
above solutions to the one and two body problems for the bubble dynajiics.

The superposition hypothesis was given in [211 and [22]. It describes the motion of the outer envelope
in the Rayleigh-Taylor mixing layer as a superposition of individual bubble envelopes. The superposition
theory explains the phenomenon that the velocity of a more advanced bubble in a multi-bubble system
exceeds the velocity of a bubble of the same size in the single bubble system. This theory also explains the
fact that a less advanced bubble in a multi-bubble system changes its direction of movement at the end of
its period of interaction with a more advanced neighboring bubble. The superposition hypothesis has the
virtue of containing no free parameter. The predictions of the superposition hypothesis are confirmed, to
within the accuracy of the experiments, for the incompressible case by analysis of the experiments of Read.
Comparison with numerical computations for compressible fluids shows agreement with the superposition
hypothesis for small compressibility values, but reveals disagreement for larger values of compressibility.
outside the range covered by experiments. An explanation for the disagreement and a possible basis
for modification of the superposition hypothesis is given in terms of density stratification of the fluids.
Disagreement is also noted in the cases where bubble splitting occurs. presumably due to omission of high
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Figure 6: Plot of the growth rate constant vs. the compressibility. The vertical bars indicate
the variance associated with the choice of random number seed.

frequency bubble splitting modes in the envelope description. Unexplainod disagreement for computations
at small Atwood number is also noted.

The superposition theory depends critically on a good description of the single (periodic) bubble dy-
namics. An extension of a previous theory for the growth of a single bubble with periodic boundary
conditions, from a three parameter ODE to a four parameter ODE, was presented to remove an earlier
ansatz which lacked physical basis. Two of the four parameters of the new theory are determined. The
remaining two must be determined through explicit numerical calculations. Such a determination, over a
limited range of the independent variables (Atwood number A and dimensionless compressibility M2) was
presented (22].

The statistical model on which the renormalization group fixed point is based describes an ensemble
of bubbles of the same radius, whose heights are defined by a uniform probability measure restricted to a
bounded interval. The statistical dynamics of flow with bubble merger is developed by treating pairwise
interactions by drawing two adjacent bubbles randomly from the ensemble. The dynamics of each pairwise
merger is given by the superposition hypothesis of [21], namely that. before merger, each bubble moves with
a velocity given as the sum of a scaled single-bubble velocity, as treated in [22], and an envelope velocity.
The bubble of higher height doubles in size and the lower bubble is removed from the statistical ensemble
at the end of the merger. Differential equations are then obtained for the common radius, average height
and variance of height of the ensemble of bubbles as a function of time. The variance of height is shown
to have a natural interval. Its lower limit is a trivial fixed point corresponding to an (unstable) interface
consisting of bubbles of identical height. Its upper endpoint is defined by instantaneous merger for bubble
pairs of extreme separation. By studying the behavior of the rate of change of variance with time at these
two endpoints, the existence of a non-trivial fixed point is shown. Figure 7 shows a numerical verification
of this renormalization group fixed point for the Rayleigh-Taylor instability.

An extensive body of experiment and computation predicts a constant acceleration for the leading edge



Bubble Bubble
Envelope Envelope

0 0

<pv> - <p><v> <P2> _ <p>2

Figure 7: The numerical verification of a renormalization group fixed point for the bubble
envelope of a Rayleigh-Taylor unstable interface. The graphs shown here represent the
superposition of distinct time steps. Both axes are scaled by the renormalization group
dynamics. The fixed point of the bubble envelope is shown in each graph. For the second
correlation, on the right, the entire graph is approximately fixed in scaled variables.

of this mixing region. consistent with the conclusions of the fixed point predicted by this theory. The
upper and lower limits placed on the value of the fixed point in this theory, are shown to yield upper and
lower limits for this constant acceleration that are in full agreement with experiments and computations
on incompressible and nearly incompressible systems. Further studies of the theory, including prediction
of transient behavior, dependence on density ratio and compressibility, assumptions on uniform bubble
radius, and extension to three dimensions remain to be carried out.

We are now studying the interior of the mixing zone itself. using computational data from well resolved
direct simulation. Statistical analysis of fluctuating quantities reveals struct tire which is more complex than
simple diffusion [8]. [ 7]. In particular. steady acceleration (Rayleigh-Taylor unstable) induced mixing of
a randomly perturbed interface shows non-monot, ne density contours and interior structure in second
order correlations of fluctuating quantities. This is consistent with theori,,s of turbulent boundary layers.
which show at least three distinct regions within the mixing layer. Th,, study of fluctuating quantities
suggests renormalization group fixed point, behavior near the edge of the mixing zone only and in the
nearly incompressible case only [8], [ 7].

3.2.3 Nonlinear Waves and Nonlinear Materials

Striking new developments in the theory of nonlinear waves for conservation laws have given rise to a new
picture for wave interactions in the large. Improved computational algorithms and modeling of physical
phenomena are to be expected as the consequences of these results are explored. It is now widely recognized
that nonlinear waves may contain two or more significant length scales. As a consequence the ratios of
these length scales become important dimensionless parameters. controlling macroscopic wave speed and
structure [29] for three phase flow. chemically reactive flow. elasticity and MHD waves [3].

Plohr. Marchesin et. al. [28] have produced a very important unifying framework for the fundamental
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Figure *:Shown here is a two (Iineonsionalslice of the wave manifold IV for a representative
2x 2 systemn of conservation laws withI an elliptic region. The figure shows the influence of

llopf bifuircat ion on the a(Iiiiissi hilt 'vof shock waves, when the viscous admissibility criterion
is taken 'into accont . T he con nect iug orbit, orient ed fromn I- to U+~. represents a T raveling
wave between these two states. i.e. a viscous-admnissible shock wave. The figure shows a
**buibble' region in which the con nect ion lbet ween U- an(] U- is p~revenited by t he occuirence
of a limit cycle. which starts at the llopf manifold. The I1i nit cycle ends in the homoclinic
loop, heyond which the con nect ion from U- to U + is est abli i bd. -The five phase diagIramns.
with associated singular points U- and I " . show orbits ini he three open regions to the
right of thle characteristic mani fold, and at two transit ionia bouindary points. Only the
shocks in the shaded region are admissible.

waves occurring in general systems of it conservation laws. Bly msitig a i local change of coordinates, the
R3ankine [-lugoniot relation is shiowti to take the formn 1R -F =0. Fhe solution set whiere 7? 0 is, a
rivial solution set representing constant states an(I rarefact ion wavo,. B3v eliminating t his trivial sol itionl

set, It is shown that the solution set IV. where TF= 0. is a sniooth anifold of dimetision ni + I and is
the closure of the set of shock poitnts. IV' is termed the fundainent il wave manifold. Signiificauly . 1)01 li
rarefaction and shock waves are represented within I-V. in accordanu' with the heuristic idea that shocks
of infinitesimal strength are infinitesinnal rarefaction fans. The raref;ctioui points form an n dimensional
submanifold C of W, the characteristic manifold. which may have sIilarities at points corresponding to
coincident wave speeds. The familiar rarefaction curves in state space for thle system of conservat ion lawks are,
projections of a single family of curves in C which form a one ditnenvional foliation of C. Correspondingly.
the manifold I-V is foliated by two families of curves. called shock curve, since they project onto the classical
shock cturves in state space. The work shows how this wave manifold framework can shed light on wo
fundamental problems in the theory of conservation laws. The first is the physical admissibility of shock
waves dletermnined by properties of d 'ynamical sv *stems parameterized 1)b the points of 11'. The seconud
problem is the bifurcation of wave curves. which correspond to loss of transversality between rarefaction.
,shock aid composite foliations. an to the boundary of the region of admissible waves.

The wave manifold. hV, contains mat v nonadm-issible shock waves. The most fundamental notion of
adomissibility presently known Is the viscous profile yteeon, which states the shock wave hmust bo the linit
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as the viscosity tends to zero, of traveling waves for an associated viscous conservation law. This viscous
conservation law gives rise to a dynamical system with critical points corresponding to the states on the
left and right of the shock wave. In [6], some of the mathematical issues which will be associated with loss
of admissibility are studied. Of particular interest is the demonstration that Hopf bifurcation can be the
mechanism which leads to loss of admissibilit'v. Similarly. homoclinic orbits are associated with a loss of
admissibility. In Figure 8 we see that the connecting orbit bifurcates when crossing the tlopf bifurcation
locus, so that one end is connected to the limit cycle emerging from the Hopf bifurcation. The connection
between the end states of the shock wave is thus broken. implying the nonadnissibilitv of this shock wave.

The transitional waves are the most cuirious of the novel shock waves discovered in the recent renewal of
interest in Riemann problems. These waves have dynamical system orbits which connect saddle points to
saddle points, and thus they appear to be inherently uns able. However. they have been essential to obtain
a satlsfactorv existence and uniqueness theory for solutions of Riemann problems. Stability analysis has
been used in the search for a more satisfactory basis for accepting these waves as physically meaningful.
In [38] nonlinear stability was studied. tdid on a numerical level, established for these shock waves.

Modeling of phase transitions was shown to depend on an additional degree of freedom (the order
parameter), enlarging the system to give internal structure [17]. T.-P. Liu in his earlier work on nonequi-
librium thermodynamics [30] also considered a larger system as a regularization of a smaller one. Related
studies of the phase field model of phase boundaries [4], [ 5] follow this point of view. The relation between
kinks and the loss of convexity in the equation of state and multiple or split waves in Riemann problems
was developed in a systematic fashion in [32].

A fully conservative Eulerian formulation of the elasticity equations [33]. [ 34] has recently been ob-
tained. This formulation promises to be of considerable importance. In cases of large deformation. Eulerian
computations are necessary to avoid the severe mesh distortion of Lagrangian grids. A thermodynamically
consistent form of the elasticity constituitive laws derived from a free energy with a small deviatoric strain
was given [33], [ 34]. This formulation allows arbitrary fluid behavior in the pressure and thermal modes,
and depends on a single shear modulus to describe shear strength. It was shown that this formulation
is the lowest order approximation to a general free energy in the case of a small deviator;c strain. An
elasticity Riemann solver was constructed for this case. Computations have shown the distinct advantage
of the fully conservative approach [2]. [ 15].

In our study of nonlinear materials, a new and fully conservative formulation of plasticity was also
formulated [3-4]. Based on the importance of the conservation formulation for computations in gas dynamics.
we expect that this discovery (ould be of very fundamental character.
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